Detecting Functional Relationships between Simultaneous Time Series
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We describe a method to characterize the predictability and functionality between
two simultaneously generated time series. This nonlinear method requires minimal
assumptions and can be applied to data measured either from coupled systems or from
different positions on a spatialy extended system. This analysis generates a function
gatistic, Q.., that quantifies the level of predictability between two time series. We

illustrate the utility of this procedure by presenting results from a computer simulation and
two experimental systems.

PACS number(s): 05.10.-a, 05.45.-a, 05.45.Tp

1. INTRODUCTION

A common challenge encountered by experimentaistsin nonlinear dynamicsis
how to relate pairs of time series, such as those measured from two points on a spatially
extended system or from two coupled systems. Many nonlinear systems exhibit spatial as
well astempora dynamics and an understanding of the spatial behavior is often vital to
understanding the overall dynamics[1]. Examples of such spatiotemporal systems are
“auto-oscillations” of magneto-static spin wave modesin ferrimagnetic films [2], the
response of a magnetostrictive ribbon to AC magnetic fields, and fluid motion in Taylor-
Coquette flow [3] or Rayleigh-Bernard Convection [4]. One way to characterize the spatia
dynamicsisto simultaneously monitor a property of the system at two different positions
and determine the relationship between the resulting data. The relationship between
simultaneous time series may also describe properties of the coupling between two coupled
systems. A wide variety of linear techniques are available to investigate the functionality
between concurrent time series, but these techniques often fail to provide any useful
information if the relationship is nonlinear.

In this paper we will describe a general nonlinear technique that investigates the
functionality between pairs of time series with minimal assumptions about the nature of
either the data or the dynamics. This generality allows this technique to be applied to awide
range of experimental systems and to account for more general functionality than strictly

linear. Theresult of thisanalysisisafunction statistic, Q .., that quantifiesthe

CO ]
predictability and functionality between the two time series and can be compared to results
from linear techniques such as the cross-correlation. This technique may be useful to
experimentalists with time series data as well as provide another tool for general time series
anaysts.



The procedure builds on techniques designed to investigate functionality between
time series[5], especialy those of several of the authors[6,7]. These earlier procedures
calculate a statistic that quantifies certain properties of functions relating time series such as
continuity or differentiability. Thisanaysis providesaway to calculate afunction statistic
that is ameasure of the predictability between the time series.  Roughly speaking, this
statistic quantifies how well can we predict the behavior of one time series if we know the
behavior of the other time series. This technique can be extended to investigate the nature of
the functional relationship between the two time series by testing for nonlinearity in the
function. One important aspect of thistechnique isthat it uses the datato establish a
limiting length scale--alimit of relevance [8]--rather than intuition or knowledge about the
system and is applicable to both experimental and computational results.

2. PROCEDURE
Given two simultaneous time series{ h,, g}[9], we construct vectors x, and y, and

atractors X and Y, suchthat x; = (h;, Ry Negy) 1 X andy; =(9, Qo s Gupeagy) 1 Y

by time delay embedding. The parameters of the embedding, thetime delay t and the

embedding dimension d, are determined using the minimum of autocorrelation function [1]
and the false nearest neighbor agorithm of Kennel and Abarbanel [10], respectively [11].

However, any combination of d and t that adequately captures the dynamics of the system

should yield useful results. Next we assume that afunction F exists such that y, = F(x,).
Function F is assumed to be continuous but no other conditions are imposed. Since the
determination of F may not betrivia, an intermediate god isto investigate properties of the
function. Wewill calculate afunction statistic that allows us to describe whether function F
actually exists, how accurately we can make predictions between time series, and if the
function isnonlinear. To derive this statistic, we assume that nearby points on X to map to
nearby pointsonY (see Fig. 1), provided F exists. Thisbehavior isequivaent to thetwo
time series being related by a continuous function. Our function statistic, Qco , Isameasure

of thelocal predictability between the two time series. A high value indicates strong
predictability between the time series.
Hereis an outline of the procedure to calculate Qco . Inall of thefollowing, we

assume that we have measured the datain such away that h, and g are sampled
smultaneoudly and we define x; and y; as corresponding points if the indices of the first
coordinates are equal. We systematically investigate clusters of nearest neighbors on one
attractor (the source), and quantify the locality of the corresponding points on the other



attractor (the target). Each cluster of points on the target attractor will yield avaue for Qco .

We repeat this calculation for anumber of clusters and average the valuesto find an
attractor wide value for the function statistic. In order to characterize the locality of the

points on the target, we need areference length scales. We utilize the variance of points on

the attractors as our measurement and quantify the strength of the predictability using the
significance of thisvariance. The significance of the variance is defined as the probability

that the actual variance islarger than agiven value, assuming s? isthe mean variance. This

value will be calculated using a probability distribution function for the variance. There are
two primary stepsin thisanalyss, first, determine the reference length scale and then
calculate of the function statistic. The two steps are outlined bel ow:

|. Determination of length scale s on Target Attractor
1. Select apoint (a*“center”) y, on the target attractor.

2. Gather N nearest neighbors of this center, where N is large enough to

achieve good statistics but small enough to calculate a minimum length scale
(Fig. 2).

Determine the variance of these points.

Set the significance of the variance equal 0.95 and solvefor s(y,).

Repeat for anumber of other centers and average values to find attractor wide s.

etermination of Function Statistic
Select a center x, on source attractor.
Gather al of the points within some radius d of this center. )
Find all of the corresponding (i.e. simultaneousin time [12]) points on the target
attractor (Fig. 3).
Find the variance of these points and calculate the significance of this variance

QCO (Xo)-

Vary d to maximize the significance for thispoint. _
Repeat for anumber of other centers and average to find avalue for the function

statistic.
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For good predictability our null hypothesisisthat s isatypical length scale for our

data, implying that sets with no functiona relationship will have predictability errors>> s,
hence resulting in low significance of variance. In actuality, we want to show that the
varianceismuch smaller than s and that s acts as a good upper bound so we know
prediction at error levelsbelow s islikely. Thisisthe same asrequiring that the variance of

acluster of points has an upper bound. High values of the significance of the variance
correspond to high predictability and therefore the high likelihood that the time series are
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In order to calculate the significance of the variance for these clusters of points, we
need an expression for the probability distribution function (PDF) for the variance, which

we will determine using the central limit theorem. For any group of vaues, {s']¢, &, &,...},

N-1
where both themean 6° = = § §* and the standard deviation y* ={(s” - {s°))°) are
i=0

Zl~

Mg N® ¥. Ifthe

known, we can approximate the PDF(s?) as expg
Gaussian Approximation (y? = 26 *) isapplied, then the probability distribution function
can be written as

2\ _ 0 'O
PDF(s") —expg %— - 1 = .

We then use this expression as the probability distribution function of the variance of
clusters of points on attractors. The significance of the variance is defined as the probability
that a given varianceislarger than &

1 var % N
signf (var) =1- orm 0 pg %— 1 _ds 2

where norm isthe normalization constant (Fig. 4). Thisexpression isused to calculate

both the length scale s and the function statistic Qco (see previous section).

When using a Gaussian for the probability distribution function of a set of
variances, we need to account for the possibility of unphysical negative variances. We
account for this by integrating from 0 ® var, truncating the negative variances, and by
modifying the normalization constant. |f the mean of the distribution is far from O, then
norm® 2. On the other hand, as the mean of the distribution approaches 0, then
norm® 1. To find the normalization constant, we set

"2 s

1 var % N
—Oexp-—gsiz-lg d=lasva ®¥ (3
norm ; 8 4 ec 9

tofind that norm =1+ erf%7a, erf isthe error function. This expression for the

normalization constant accounts for the truncation of negative variance values.

B. Scale Determination



One strength of thisanalysisis that we calculate alength scale from the data itself
without making any assumptions about the dynamics. The attractors allow usto determine

ascale s directly from thedata. Hereisthe procedure. Select arandomly determined point

Y, (the center) on the target attractor {y | Y, Y1, Y, Ys, ---}. Gather the N nearest neighbors
of center y, and calculate the variance of these points,

1y
var——N_lill(y Y) (4),

where y isthemean. A Theiler Exclusion [13] is used to avoid counting points that are
very closein time as nearest neighbors. Each cluster of points will contain a specified
number of points, large enough to achieve good statistics but small enough to produce a
minimum length scale. The number of points N has ranged from 20-50 pointsto 1-2% of
the total number of points, depending on the nature of the data (considering factors such as
noise and the total number of points).

To determine avaluefor s, weinsert this variance into the equation for the
significance of the variance, set the significance equal to 0.95 and determine the

corresponding s. Repeat for anumber of randomly determined centers (typically 100) and

average the valugs fo pr(>c3uce an attractor-wide scaes,
G:Wa =10 Vi (5).

Theresulting value is based solely on the dataitself without any a priori assumptions about
the system dynamics. We now use this scale to calculate the function statistic.

C. Cdculation of Function Statistic

Given scale s on the target attractor, we now turn to the source attractor {x | X,, X ,

X, X,, ...}. Tobeginthe function statistic calculation, we gather all of the pointswithin

2!
someradiusd, { X, | X;, X, Xs, ...}, of some randomly selected center on this attractor X,,.

(Inthis case the indices of these points refer to the spatial neighbors of x,, not the temporal
order of the time series)) The variance and significance of the corresponding points on the

target attractor {y | y1, Y., Y,...} arethen calculated. disthen varied on the source attractor

(Fig. 5) to maximize the signf(var) for this center,

Qeslxo) =5 {signf (xo)} (6).



The function gtatistic Q K is defined as the average of the maximum values for the

signf(var) for anumber of clusters across the attractor:
1 one
Qe = N a,_,Qe(x:) (7),

N, isthe number of centers, usually around 100[14]. Thisisroughly ameasure of the

percentage of points on the first attractor whose corresponding points fall within the s

around y, on the target attractor. High valuesindicate that good predictability and strong
functionality, low valuesthat it is unlikely that the two time series are related by a function.

D. Function Statistic beyond Linear

Another application of thisanaysisisto use this statistic to test for nonlinearity in
the functional relationship between two time series. The function statistic beyond linear isa
measure of how much more accurate a nonlinear prediction isthan a strictly linear
prediction. The procedure for this application isthis:

1. Fittheattractorsto alinear modd: Y = AX. We have used aleast squaresfit

model.
2. Determine the variance of the residues

n=awy- A’ ()
3. Usethisvalueh for the scale s in the significance calculation.
If thereis only alinear relationship between the two attractors, h, sare on the same order

and the values for the function statistic beyond linear are low. If there are nonlinear

components to the relationship between the time series, then h > s and the values for the

function statistic are high. Care must be taken when using this analysis and should only be
interpreted as such when there is some rel ationship between the two time series. Two
completely stochastic time serieswill produce alarge value for the variance of the residues
and the calculated statistic may a so be high. We now present data from severa
experimental systems:
2. ROSSLER FORCED LORENZ SIMULATION

Wewill first apply this technique to data from a computer simulation to verify that
we get results that are expected. We will use a six-dimensional system consisting of a
Lorenz system driven by a Rossler system:



.i. XR =" (YR+ ZR)

Rosder-Drive }YR = X, +aY, 9),
i.
TZR: b+ZR(XR' c)
.‘I. XL = 'G(XL - YL)

Lorenz-Response |'YL =-XZ, +pX - Y +K(Ys- Y), K=coupling constant (10)
i
;fZL = XLYL - BZL

where a=b=0.2, c=0.7, s=10, b=8/3, and r =60. In order to make the two systems

comparable we select g=3.0 as gain constant, which makes the Rosser amplitude

comparable to the Lorenz amplitude and tune the time steps to make the two time scales

compargif€present three sets of datawhere we determine the predictability from the Réssler
time seriesto the Lorenz time series. The data are simultaneous measurements of the
Rosder X coordinate and the Lorenz X coordinate. Thefirst set has no additive noise and
no coupling, the second set has no additive noise and strong coupling, and the third set has
5% additive noise and strong coupling. Vauesfor the cross-correlation, function statistic,
and function statistic beyond linear for each of these statesis shown in Fig. 6. The cross-
correlation and the function statistic are low for the uncoupled case, which is consistent for
two independent systems. The lack of any linear relationship implies alarge value for the
variance of the residues and explains the higher value for the function statistic beyond
linear.

The high values for the three statistics indicate that the two time series have strong
predictability and are strongly related by afunction for the two coupled cases. The addition
of 5% noise has avery dight (one or two percent change) effect on the two statistics. The
high value for the function statistic beyond linear for both coupled cases indicate that the
function relating the two time series may have nonlinear components.

3. SPIN WAVESIN YTTRIUM IRON GARNET FILMS

A solid state system that exhibits spatial-temporal chaotic dynamicsis spin wave
modulation of resonant modesin Yttrium Iron Garnet (Y1G) films. YIG isatechnologically
useful ferrimagnetic material used in microwave devices such aslimiters, resonators, and
filters and many aspects of its nonlinear behavior have been studied and exploited [15]. A
number of previous experiments performed by severa of the authors [16-19] have
investigated the global temporal dynamics of Y 1G sample structures. 1n these experiments,



we analyze the response at two positions on the surface of a YIG film to investigate the
gpatial dynamics across Y 1G films.

When YIG films are placed in saturating DC magnetic fields, the atomic spins
initially align and precess around the direction of the DC field. Unless the spins are excited
by an AC magnetic field, the spin precessions will damp out. When aresonant AC
magnetic field is applied perpendicular to the DC field, the spinswill precess around the DC
field direction at the resonant frequency [20]. Phase modulations in the processions of
neighboring spins produce traveling spin waves which, when reflected at the film
boundaries, result in standing waves corresponding to the magneto-static modes of the film.
At low applied AC powers, these modes are linear at the resonant frequency but are coupled
toinitially negligible nonlinear modes. Asthe excitation power isincreased above a
threshold power (the Suhl Instability)[15], the linear modes begin to interact with continuum
half-frequency spin wavesin the film. The non-linear interaction of the stationary modes
and the half frequency spin wave manifold produce nonlinearities that eventually dominate
the dynamics. Theseinteractions lead to low frequency (kHz) modulations of the amplitude
of the (GHz) magneto-static mode resonances. These modulations have been observed in
both small spheres and thin filmsof YIG. These modulations are measured in our
experiments and can exhibit periodic (called auto-oscillations), quasi-periodic, and chaotic
behavior.

A diagram of the experiment can be seenin Fig. 7. Our sampleisarectangular film
cut from asingle Y1G crystal with dimensions 0.85 x 0.72 cm? and is 37 microns thick.
The modulations of the magneto-static modes are detected by using apair of coaxia probes
mounted near the film surface. The film is mounted in awave guide and is excited by a2-4
GHz microwave field. The probes are oriented to pick up the resonant oscillation of the
magnetization in the film. The probe microwave field is amplified and detected using
standard diode detectors. The kHz auto-oscillation modulation is then digitized and
processed. Both periodic and chaotic states have been observed over awide parameter
range. Each data set consists of atime series of the voltage signal from each probe. We
investigate the relationship between the two time series by initially performing cross-
correlation analysis to quantify the linear aspects of the relationship and then investigating
the nonlinear aspects using the function statistic.

Figure 8 shows the linear correlation and nonlinear function statistic as a function of
microwave excitation power for a power sweep at performed at 460.1 Oe and 3.0251 GHz.
Initiadly the signal to noiseratio islow but eventualy the system evolvesinto aregion of
periodic states where both the cross-correlation and function statistic values are high. Both
statistics are determined using 100 centers for both the scale and function statistic



calculations. Both measures drop off as the states |ose periodic structure and become more
chaotic. We also show aplot of the function statistic beyond linear (Fig. 9), calculated
using aleast squares approximation for the linear model.  The high value for the function
statistic beyond linear indicates that the error in the linear model is greater than the attractor

widenoisescales. Theseresultsimply that there isanonlinear component to the

relationship in this parameter range.

We present results from another power sweep (performed at 2.9747 GHz and
449.9 Oe) in Fig. 10. The statesin this power sweep produce periodic signals with similar
spectra except in the region between 5.4 and 7.4 dBm. Here, the measured time series are
quasi-periodic with two non-commensurate frequencies. Theindividual probes measure
both frequencies but the relative intensities of the individual frequencies are different for
each probe. The higher frequencies are more intense at the position monitored by the first
probe, while the lower frequencies dominate the dynamics at the position monitored by the
second probe. At these powers, the linear cross-correlation is much lower than the values for
either of the nonlinear statistics. Thisimpliesthat thereis some functionality in the power
range that is highly nonlinear in nature. Thisisaso an example of a system with
functionality that can not be characterized by the linear cross-correlation and demonstrates
the utility of the function statistic analysis. I1n order to further explore the behavior in this
power range, we calculated both the function statistic and function statistic beyond linear for
these states interchanging the source and target attractors. These values were very closeto
those previoudly determined (both for the function statistic and the function statistic beyond
linear) and support the existence of an invertible function relating the time series.

We would like to determine if the resultsin Fig. 10 are caused by differencesin the
dynamics as driving power isincreased or by different noise levelsin the time series used to
calculate the statistics. As atest of the noise level, we use the Gamma statistic [21]. Tofind
the Gamma statistic, we cal culate the mean square distance from an arbitrary reference point

to thep’th nearest neighbor in the X attractor ( A(p) ) and the mean square distance from an
arbitrary reference point to the p’th nearest neighbor in the Y attractor (y(p) ). We then plot

v(p) asafunction of A (p). Asp -> 0, Steffansson and Jones show that y (p) approachesthe

variance of the noise level in the g time series. We can estimate the variance of the noise
level franvigiptort inver cepbohibasi@, wsand(p) ahotthe variance of the residues for aleast

sguares linear model in Fig. 11. We plot the value of the g statistic as defined above, which



isameasure of the noise variance in the g time series. We also plot s, which isameasure of

the variance of agroup of near neighbors on the Y attractor (calculated when we determine

the function statistic). The g statistic remains roughly the same size over the range of powers

in Fig. 11, indicating that the noise levelsin the different time series are roughly the same
relative to the signal size. The differences seen between the statisticsin Fig. 10 are not

caused by differing noise levels. Itisinteresting to notethat s isroughly the samesizeasg;

and the two different methods of determining a minimum length scale on the attractor Y give

similar results. s (calculated in the determination of the function statistic) is upper bounded

by g, indicating that this noise statistics is smaller than the underlying noise level in the data.

4. MAGNETOSTRICTIVE RIBBON EXPERIMENT

We a so applied the statistics described above to data from an experiment involving
amagnetostrictive metal ribbon. We suspended a ribbon of Metglass 2605sc between a pair
of Helmholtz coils. The top of the ribbon wasrigidly clamped, whilea 1.6 g mass was
clamped across the bottom of the ribbon, allowing the bottom of the ribbon to swing freely.
The ribbon was 25 mm wide, 60 mm long, and 1 mil thick. The Helmholtz coils produced a
magnetic field in the plane of the ribbon. The magnetic field consisted of a6.5 Oe DC field
and an AC field that could be set to different magnitude and frequencies. The AC magnetic
field coupled to domain wallsin the ribbon to exert atime varying force on the ribbon.
Figure 12 isa simple diagram of the experiment.

Two small spots (about 1 mm?) on the ribbon were illuminated be a He-Ne laser.
The ribbon surface was not smooth, so the spots produced diffuse reflections. The reflected
light was focused on two small-area differentia diode detectors, which compared the
reflected beams to reference beams straight out of the laser in order to reduce noise from
laser intensity modulations (noise). Movement of the reflected beam across the detector
produced atime varying signal proportional to the deflection of the ribbon at the spot
illuminated by that spot. One laser spot was kept fixed in the center of the ribbon, while the
other spot was scanned over the surface, so that two different signals were produced by the
two detectors. Because each of the beams hit the ribbon at a different angle, different signals
were produced even when both beams illuminated the same position.

The magnetization of the ribbon was coupled to its strain because the ribbon had a
large magnetostriction. A magnetic field applied to the ribbon would change the stiffness of
the ribbon, aswell as changing its shape. The stiffness of the ribbon affected its mechanical



response, so driving the ribbon with an AC magnetic field produced a highly nonlinear
system.

We applied the function statistic, the function statistic beyond linear, and linear
cross-correlation to pairs of time series from the ribbon. Because the motion of the ribbon
was highly nonlinear, it was not possible to tell by eye what the relation was (if any)
between the two time series. Instead, we applied the statistic to determine what sort of
rel ationships there might be. We drove the ribbon at an AC frequency of 113 Hz, which is
the location of a bending mode of the ribbon. We then sampled the time series signals from
the two detectors every time the driving signal crossed zero in the positive direction. We
applied the statistics to these strobed time series.

A. Driving a 1.4 Oe

Figure 13 shows the power spectrum of one of these strobed time series when the
AC magnetic field RMS amplitude was 1.4 Oe. Figure 14 is a Poincare section obtained by
plotting the strobed time series from one detector against the strobed time series from the
other detector. The response of the ribbon appears to be quasiperiodic, responding at
frequencies of 113 Hz, 4.5 Hz, and combinations of the two frequencies.

In order to determine statistics, the laser spot that generated the time series |abeled
“y” wasfixed at the center of the ribbon, while the time series |abeled “X’ was scanned
over the ribbon. There were 8 scans recorded along the narrow dimension of the ribbon and
32 scans recorded along the long dimension, for atotal of 256 scans.

Figure 15(a) isaplot of the function statistic beyond linear QCo obtained by

comparing the strobed time series from the center of the ribbon to the strobed time series at
other points at the ribbon. Each time series contained 2000 points embedded in 5
dimensions. White on the plot indicates avalue of 1, while black indicates avalue of 0. Qco

isnear 1 over the entire surface of the ribbon, indicating that the relationship between the
two embedded time seriesis not explained by alinear map. Either therelationship is
nonlinear or thereis no relation between the time series.

Figure 15(b) shows the value of the function statistic Qco over the surface of the

ribbon (where 1 of the time seriesistaken at the center of the ribbon). Qco isdightly larger

near the middle of the ribbon than near the ends, which suggeststhat it is easier to predict
the motion at a point on the ribbon from a nearby point than from a distant point. We expect
that we should be able to predict the motion of one point on the ribbon from the motion at
another point because the ribbon is undergoing quasi periodic motion, but noise can reduce
the value of Qc° .



Figure 15(c) shows the maximum value of the cross correlation between the time
series from the center of the ribbon and time series at other points. The cross correlation
measures whether or not two signals are linearly related, but it also alows for ashift in time.
The cross correlation between the time seriesis not very large for most points on the ribbon,
sowhile Q K shows that there is some predictability between time series from different

points on the ribbon, the relationship between these time seriesis not simply linear. The
cross correlation agrees with the function statistic beyond linear Qco , Which shows that any

relation between time sariesis nonlinear.

B. Driving a 6.1 Oe

Figure 16 shows a power spectrum from a strobed time series when the AC
magnetic field had an RM S amplitude of 6.1 Oe. Spectral lines at multiples of 5 Hz are still
present, but there is now also alarge broad band background signal. In Fig 17, the Poincare
section for this data no longer appears to be quasiperiodic. The statistics for pairs of time
series were computed as before, with an embedding dimension of 5.

The function statistic beyond linear Q K inFig. 18(a) is near 1 everywhere,

suggesting that any relation between motion on different points on the ribbon is nonlinear.
The function tatistic Qco in Fig. 18(b) appearsto show two separate regions. Qco isnear

O for regions near the top of the ribbon and larger for regions near the bottom. The motion
of the top half of the ribbon is not very predictable from the motion of the bottom half. The
cross correlation plot in Fig. 18(c) shows that the relation between motion on different parts
of the ribbon is very nonlinear, except when the two parts of the ribbon are very close
together.

This magnetic ribbon is being driven very hard, so it isunlikely modeling of the
motion of the ribbon for such large driving fields would be possible. All the information we
can gain about the ribbon will come from statistics such as those used above. It istempting
to speculate whether or not the motion seen when the driving field isat 6.1 Oe is chaotic, but
in our experience, attempting to calculate indicators of chaos such as Lyapunov exponents
from experimental data are not yet very reliable at distinguishing chaotic motion from other
complicated types of motion.

5. Conclusions

We have described a new way of quantifying the relationship between two time
series and applied this technique to severa experimental systems. This technique allows for
the computation of a statistic that describes the strength of the relationship between two time



series and aso the intensity of the nonlinearity of any such relationship. Using this
technique along with other linear and nonlinear techniques can help elucidate the
relationship between time series and the underlying dynamics. Results from avariety of
experiments show that the utility of thisanalysis.

The authors wish to thank D. King, W. Lechner, and J. Vaenzi for technical

assistance. C.L. Goodridge acknowledges support from an Office of Naval
Research/American Society for Engineering Education Fellowship.
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Figures

FIG. 1. Thistechnique quantifiesthe behavior of corresponding points on the two time
series; that is, do points, which are nearest neighbors on the source attractor, have
corresponding points (Simultaneous in time) which are nearest neighbors on the target

attractor.

FIG. 2. Thetarget attractor isdivided into clusters of points, which are nearest neighborsto
acenter point. The variance of these pointsis used in the determination of the length scale
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FIG. 3. Nearest neighborson the source attractor (defined as being within radius d of a

given center point X,) and the corresponding points on the target attractor. Our statistic
guantifies the locality of the corresponding pointsto within some length scales.
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FIG. 4. We evaluate the Gaussian from O -> var to determine avalue for the significance of

the variance and therefore the function statistic. The normalization of the integration will
depend on the mean of the distribution.



FIG. 5. Theradiusisvaried around a given center and the variance of each collection of
pointsis calculated. The number of points used to determine the length scale s varies
depending on the nature of data.
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FIG. 6. A plot showing three different statistics, the cross-correlation, the function statistic,
and the function statistic beyond linear, for the Rossler driven Lorenz system. The high
values for the cases with coupling indicate that thereis a functiona relationship between the
two time series, likely nonlinear in nature considering the high values for the nonlinear

statistic.
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FIG. 7. Coaxid probes measure the magnetic moment of the YIG film at two positions. A
pair of diode detectors then detects the modulation of the spin waves.
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FIG. 8. Thisplot shows the maximum value for the cross-correlation (O) and the function
statistic (@) for apower sweep performed at DC field 460.1 G and excitation frequency
3.0251 GHz. Thelinear cross-correlation and the nonlinear function statistic exhibit similar
behavior, indicating that, in aregion of periodic behavior, there is strong functionality, which
drops off as the power isincreased.
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FIG. 9. Thisplot showsthe value of the function statistic beyond linear (W) for the power
sweep performed at 460.1 G and 3.0251 GHz. The high values even where both the cross-
correlation and function statistic values are low (such as those above 10dBm) indicate that
there is some functionality in these states and that it isnonlinear in nature.
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FIG. 10. A plot of the cross-correation (O), function statistic (#), and function statistic
beyond linear (gray M) for a power sweep at 2.9747 GHz and 449.9 Oe. Intheregion
between 5.4-7.4 dBm, the two nonlinear statistics are higher than the linear cross-
correlation, indicating that the functionality in thisregion is nonlinear.
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FIG. 11. Plotsof two different noise levels: g (ameasure of the stochastic noise level of
the time series data) (A), s (found during the calculation of function statistic) (), and h
(the variance of the residues from aleast squares linear model) (®). s is upper bounded by

ghbut the two noise statistics are close in value. hhas more variation and is dependent on the
strength of alinear fit between the attractors.
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FIG. 12. Simple diagram of the driven magnetic ribbon experiment. The laser illuminates 2
spots on the ribbon, and the motion of these spotsis used to detect the motion of the ribbon
at the location of the spot.
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FIG. 13. Power spectrum S of the signal from the center of the ribbon when the AC driving

field is 1.4 Oe. The time series has been sampled once per cycle of the driving frequency of
113 Hz.
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FIG. 14. Plot of one strobed time series (x(n)) vs. another strobed time series (y(n)) taken
with both laser spots at the center of the ribbon when the driving amplitudeis 1.4 Oe. The 2
laser beams are at different angles, so the two time series are not the same.
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FIG. 15. (a) Plot of the significance beyond linear statistic Q.° over the surface of the

ribbon, where one on the time series is from the center of the ribbon (when the drive
amplitudeis 1.4 Oe). Whiteisequa to 1, while black isequal to 0. (b) Plot of the function

statistic Q2 over the surface of the ribbon. (c) Plot of the maximum vaue of the cross
correlation between detected time series from the ribbon.
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FIG. 16. Power spectrum S of the signal from the center of the ribbon when the AC driving
field is6.1 Oe. The time series has been sampled once per cycle of the driving frequency of
113 Hz.
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FIG. 17. Plot of one strobed time series (x(n)) vs. another strobed time series (y(n)) taken
with both laser spots at the center of the ribbon when the driving amplitudeis 6.1 Oe. The 2
laser beams are at different angles, so the two time series are not the same.
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FIG. 18. (@) Plot of the significance beyond linear statistic Q.° over the surface of the

ribbon, where one on the time series is from the center of the ribbon (when the drive
amplitudeis 6.1 Oe). Whiteisequa to 1, while black isequal to 0. (b) Plot of the function

statistic Q °over the surface of the ribbon. (c) Plot of the maximum value of the cross-
correlation between detected time series from the ribbon.



